THE VALUE OF PERFORMANCE. **NORTHROP GRUMMAN**

Critical Design Review: NAU Standoff Project

Team: Elaine Reyes Dakota Saska Tyler Hans Sage Lawrence Brandon Bass

- 1. Project Description
- 2. PDR State of Design vs Current Design
- 3. Potential Failures and Testing Procedures
- 4. Schedule and Budget

1. Project Description Overview

- 1.1 Project Background
- 1.2 Project Requirements
- 1.3 Customer Needs
- 1.4 Engineering Requirements

1.1 Project Background

- Standoffs are bonded to motor domes using adhesive
- Adhesive is applied and bracket is taped to help cure adhesive
- Taping is unreliable and costs money and man hours when it fails
- Analyze and build a prototype that will hold standoff brackets while adhesive cures

1.2 Project Requirements

The mounting arm shall:

- ❏ Support brackets bonded 4-36 inches inboard from the motor ring
- ❏ Have 6 degrees of freedom
- ❏ Be mountable to several rocket motors
	- Orion 38
	- Orion 50XL
	- Castor 30XL
- ❏ Be ESD (electrostatic discharge) compliant
- ❏ Perform a pull test of 50 lbs at 45 degrees of freedom
- Maximum deflection of 1" for rail design
- ❏ Be adaptable to several mounting bracket templates
- ❏ Hold a bracket to up to 10 lbs
- ❏ Lock in place and apply a force of 20 lbs
- ❏ Have a Factor of Safety of 3.0 based on maximum expected loads
- ❏ Be easily manipulated by hand
- ❏ Allow the use of multiple mounting arms at a time

Table 1. Customer Requirements

Figure 3. Castor 38

1.4 Engineering Requirements

- 1. Electrically Conductive (Y or N)
- 2. Weight (lbs)
- 3. Principal Dimensions (in)
- 4. Working Length (in)
- 5. Working Angle (Degrees)
- 6. Modulus of Elasticity (lbf/in2)

2.1 PDR State of Design

Action Items from the PDR Presentation:

- ❏ Simplify manufacturing
- ❏ Perform a risk analysis for failures
- ❏ Review if using the rocket ring holes is possible
- ❏ Review if galling of power screw is possible
- ❏ Verify clamping mechanism does not overstress rocket motor ring
- Reduce deflection of device rails
- Make design changes to perform 50lb. pull test directly on standoff
- ❏ Make design changes to perform 20lb. push test per standoff (max of 6) on the bracket template

2. PDR State of Design vs Current Design **Overview**

- 2.1 PDR State of Design
- 2.2 Intermediate Design Change
- 2.3 Current State of Design
- 2.4 Design Modifications

2.1 PDR State of Design

Figure 4. PDR CAD Model

Elaine Reyes | NG Standoff Project | 2/27/20 10

2.2 Intermediate Design Change

Figure 5. Intermediate CAD Model

Sage Lawrence | NG Standoff Project | 2/27/20

❏ Change of Design Requirements

- ❏ Make design changes to perform a push test of 20lb. per standoff (max of 6) on the bracket template (120lb max)
- ❏ Recently reverted back to perform a 20lb. push test per bracket template
	- ❏ Intermediate Design was overbuilt, cumbersome, and was lacking useful features

2.3 Current State of Design

Figure 6. Current CAD Model

Sage Lawrence | NG Standoff Project | 2/27/20 13

2.4 Design Modifications

Rocket Motor Clamp

Figure 7. PDR Motor Ring Clamp

Figure 8. Custom Clamp Jaw for Orion 50 Motor Rings

Figure 9. Current Motor Ring Clamp

Motor Clamp Analysis

- FEA to determine stresses and deflections of ring when loaded (F.O.S. 42)
- Ring could experience punching shear when loaded
	- Coating
	- Screw threads would fail first
- **Complex hand calculations**

Figure 10. Ring Moment FEA Analysis

Figure 11. Ring Stress Distribution

Sage Lawrence | NG Standoff Project | 2/27/20 15

Angling Mechanism

Figure 12. Spline Shaft used to Adjust Rail Angle

Figure 13. Updated Angling mechanism to Adjust Rail Angle

Pin Shear Analysis

- Single pin must resist moment from entire rail cart lever arm.
	- One long, single pin going through both sides subjected to double shear.
- Max Load 50 lbs, results in 360lb internal shear on pin.
- Required diameter for desired factor of safety in pins is 0.207 in.

 $\tau_{failure}$ = 32 ksi $F.O.S. = 3$ τ _{allowable} = 10.67 ksi

$$
\tau_{Avg} = \tfrac{V_{\text{internal}}}{A_c}
$$

$$
D_{required} = \sqrt{\frac{4 V_{internal}}{\Pi \tau_{allowable}}}
$$

Rail System

Figure 14. PDR Rail System

Figure 15. Current Rail System

Rail System

- Hollow Cylindrical Tube:
	- $1xx = 199$ in⁴
	- $-$ Ac = .982 in²
- Hollow Rectangular Tube:
	- $1xx = .95$ in⁴
	- $-$ Ac = .9375 in²
- Deflection of Cantilever Beam:
	- δc = .391 in
	- $-$ δr = 082 in
		- \cdot F = 50 lb
		- $E = 10000$ ksi
		- $L = 36$ in
- Weight of Rail System:
	- $-$ Wc = 3.46 lb
	- $Wr = 3.31 lb$
		- $\rho = .098$ lb/in³

Hollow Cylindrical Tube:

$$
Ixx = \frac{\Pi}{64}(D^4 - d^4)
$$

$$
A_c = \frac{\Pi}{4}(D^2 - d^2)
$$

Hollow Rectangular Tube:

$$
Ixx = \frac{1}{12}(BH^3 - bh^3)
$$

 $A_c = BH - bh$

Deflection of Cantilever Beam: $\delta = \frac{F L^3}{3 L F}$

Weight of Rail System:

$$
W = \rho A_c L
$$

Rail Cart

Figure 16. PDR Rail Cart and Angleable Lead **Screw**

Figure 17. Current Rail Cart and Angleable Lead Screw

Angle of Twist

- Length $=$ 36 in
- $Torque = 81.625$ in-lbs
	- 1.3625" * 50lbs
- Modulus of Rigidity $= 3.8*10⁶$ psi
- Polar Moment of Inertia $= 1.104$ in⁴
	- \circ $1x = .950$ in⁴
	- \circ ly = .153 in⁴
- Angle of Twist = .04°

$$
\theta = \frac{TL}{J_{cc}G}
$$

$$
I_{x_0} = \frac{bd^3 - b_1d_1^3}{12}
$$

$$
I_{y_0} = \frac{db^3 - d_1b_1}{12}
$$

$$
J_{cc} = I_{x_0} + I_{y_0}
$$

Tyler Hans | NG Standoff Project | 2/27/20 21

Angle Locking Mechanism

- Locking of the power screw angle is essential
- Easier for operator to set up and use
	- Counteracts moment created from weight of bracket template

Figure 19. Current Angleable Lead **Screw**

- **Power Screw Analyses**
	- Self-Locking Condition
		- To ensure screw maintains position under axial loads
	- Buckling
		- Determine the critical force at which the screw buckles
	- Torque
		- Determine the torque required to push or pull on bracket
	- Thread Galling
		- Reduce coefficient of thread friction between screw and nut

Figure 20. Power Screw Assembly

● Self-Locking Condition

- ACME ½" SS Lead Screw
- μ, coefficient of static friction
- \circ d_m, mean screw diameter
- l, lead distance
- \circ λ , lead angle

Buckling

- \circ F_c, critical force
- C, end condition
- E, young's modulus
- o L_c, critical length
- I, moment of inertia

Table 2. Self-Locking Inequalities and Buckling **Equations**

Torque to Raise/Lower

- T, torque
- F, force
- \circ d_m, mean screw diameter
- l, lead distance
- \circ α , lead angle
- f, coefficient of static friction
- \circ f_c , coefficient of collar friction

● Thread Galling

- Coefficient of thread friction is 0.2
- Friction and galling can be diminished by applying machine oil
- Expected axial loads far below standard ACME thread operation

Table 3. Torque Equations

- **Self-Locking Condition**
	- Given the current conditions, the ACME screw is expected to be self-locking
- Torque
	- Torque to Raise, 0.313 lbf-ft
	- Torque to Lower, 0.176 lbf-ft

Buckling

- Using a design factor of 3.0, the critical force was determined to be 1000-lbf
- **Thread Galling**
	- Not expected to be an issue given the current operating conditions

Torque Wrench (Added Feature) Spring Scale (Removed Feature)

- Reason for Change
	- Complicated to Manufacture
	- Requires Spring Analysis
- Justification:
	- Gives reading for torque applied to lead screw
	- Allows the operator to know when to stop applying torque
	- Allows for more precise application of force to the bracket templates

Figure 21. Force Gauge Spring Housing

Push Test Template

- Lightweight universal solution to hold all bracket templates
- Easy to secure brackets with knurled knobs
- Can be angled normal to the surface
- Accommodates plates of both given thicknesses

Figure 23. Template Holder Angling Mechanism

Sage Lawrence| NG Standoff Project | 2/27/20

Pull Test Piece

- Allows for the 45° pull test needed for the device
- Threads into the standoffs directly
- Easily interchangeable with the push bracket with two pins

Figure 24. Standoff threaded piece for pull test

3. Potential Failures and Testing Procedures

- 3.1 Design Requirements
- 3.2 Potential Failures
- 3.3 Test Procedures

3.2 Potential Failures

- Bending the Circumferential Motor Ring ○ FEA
- Deformation of the Motor Ring holes
	- Shoulder Screws of smaller diameter
- Torsional Deformation of the Rails
	- Angle of Twist
- Rail Deflection

Procedure 1: ESD Compliance

Objective: To verify that the device is electrically conductive

Testing Procedure:

- 1. Place the anti-static table mat onto a table, anti-static mat on the floor, and ground the table mat
- 2. Mount the entire device on the anti-static table mat
- 3. Use a multimeter between a team member who's standing on the anti-static mat and the device to read 0V

Table 5. Test Procedure 1 BOM

Procedure 2: Torque Wrench

Objective: To evaluate the actual torque input to obtain a 20lb push and a 50lb pull.

Testing Procedure:

- 1. Place a spring scale at the end of the device
- 2. Apply torque to the wrench at incremental forces and record results
- 3. Plot the results of torque vs force

Figure 25. Torque Wrench

3.3 Test Procedures

Procedure 3: Working Angle and Length

Objective: To prove the functionality, reliability of the angling mechanisms of both the ring clamp and bracket holder, and that the device meets the required mass and working length applying a maximum force of 50 lbf

Testing Procedure:

- 1. Weigh individual parts
- 2. Mount device
- 3. Apply a 50 lbf force
- 4. Repeat procedure at all angles

Table 6. Test Procedure 3 BOM

4. Schedule and Budget

- 4.1 Schedule
- 4.2 Budget

4.1 Schedule

- March 13th: Individual analyses
- March 25th: Final product completion
- March 30th: Conduct Testing procedures
- April 10th: Testing Proof Report
- Week of April 27th: Northrop Grumman University Symposium Day

Dakota Saska | NG Standoff Project | 2/27/20 37

- 1. Project Description
- 2. PDR State of Design vs Current Design
- 3. Final Design Justification
- 4. Schedule and Budget

THE VALUE OF PERFORMANCE.

